久久人国产线看观看视电影-男人和女人免费视频大全播放,免费一级欧美大片久久网,日韩精品免费一区二区,永久无需付费看mv,亚洲人精品亚洲人成在线|精品国内自产拍在线观看|国产成人亚洲欧美二区综合|国产精品天天看特色大片 ,精品久久久久久无码人妻热_狠狠躁天天躁无码中文字幕_日韩精品射精管理在线观看_精品国产黑色丝袜高跟鞋 ,国产一级a毛一级a看免费视频-国产特级婬片免费看-91久久精品无码一区二区别-亚洲高清在线观看-永久免费看mv网站入口亚洲-少妇搡BBBB 搡BBB

品質(zhì)檢測儀 F-751系列
日期:2024-11-05 00:00:00

image.png

       品質(zhì)檢測儀F-751是基于F-750基礎(chǔ)上進(jìn)行開發(fā)的針對(duì)獼猴桃、芒果、牛油果和甜瓜的品質(zhì)快速無損評(píng)判的便攜式儀器。它準(zhǔn)確、無損快速測量果實(shí)的干物質(zhì)量或糖度,從而評(píng)價(jià)果實(shí)的成熟度。

       NIR(近紅外測定)技術(shù)在成套設(shè)備中的應(yīng)用可為我們提供客觀量化的質(zhì)量標(biāo)準(zhǔn),已在生產(chǎn)中應(yīng)用多年。我們的便攜式設(shè)備把近紅外分析技術(shù)帶給田間種植者為作物收割前提供更好、更一致的成熟度的評(píng)估和測定。F-751已經(jīng)開始在世界各地的大學(xué)、科研機(jī)構(gòu)和種植商使用。


image.png

主要功能:

1、精確的測量干物質(zhì)量或糖度(芒果、牛油果、獼猴桃和甜瓜)

2、快速測量(4~6秒)

3、非破壞測量

4、帶全球定位系統(tǒng),便于制作數(shù)據(jù)地圖

5、野外可視半透顯示屏

6、可更換/充電電池

7、SD卡數(shù)據(jù)存儲(chǔ)

8、無需創(chuàng)建模型

9、收獲前成熟度評(píng)估

10、采后品質(zhì)檢驗(yàn)


測量參數(shù):

測量原始數(shù)據(jù)、反射率、吸光度、一階導(dǎo)數(shù)、二階導(dǎo)數(shù)、計(jì)算糖度或干物質(zhì)并獲取GPS信息


應(yīng)用領(lǐng)域:

主要應(yīng)用于果實(shí)成熟度和甜度相關(guān)參數(shù)的無損評(píng)估,包括田間作物管理和收獲期評(píng)估、果實(shí)儲(chǔ)藏、果實(shí)催熟及果實(shí)零售的各個(gè)環(huán)節(jié)。


主要技術(shù)參數(shù):

1、光譜儀:濱松C11708MA

2、光譜范圍:640-1050 nm

3、光譜樣點(diǎn)大小: 2.3nm

4、光譜分辨率:最大20 nm(半峰全寬)

5、光源:鹵素鎢燈

6、鏡頭:鍍膜增益近紅外線鏡頭

7、快門:白色參考標(biāo)準(zhǔn)

8、顯示器:帶背光陽光可見透反液晶屏

9、操作環(huán)境:0-50oC,0-90%(非結(jié)露)

10、數(shù)據(jù)連接:WiFi

11、記錄的數(shù)據(jù):原始數(shù)據(jù)、反射率、吸光度、一階導(dǎo)數(shù)、二階導(dǎo)數(shù)、GPS信息、日期和時(shí)間

12、測量:干物質(zhì)量&糖度(oBrix)

13、供電:可拆卸3400Ah鋰電池

14、續(xù)航時(shí)間:大于500次測量

15、數(shù)據(jù)存儲(chǔ):可拆卸32GB SD卡

16、外殼:粉末噴涂鋁合金型材

17、尺寸:18×12×4.5cm

18、重量:1.05 kg


選購指南:

主機(jī)、操作手冊(cè)、葉夾 、箱子和相關(guān)配件


基本配置:

image.png

image.png

image.png

image.png



參考文獻(xiàn):


D. Valasiadis et al., Wide-characterization of high and low dry matter kiwifruit through spatiotemporal multi-omic approach. Postharvest Biology and Technology 209, 112727 (2024).

2. G. Nú?ez-Lillo et al., A First Omics Data Integration Approach in Hass Avocados to Evaluate Rootstock–Scion Interactions: From Aerial and Root Plant Growth to Fruit Development. Plants 13, 603 (2024).

3. A. Mumford, Z. Abrahamsson, I. Hale, Predicting Soluble Solids Concentration of ‘Geneva 3’ Kiwiberries Using Near Infrared Spectroscopy. HortTechnology 34, 172-180 (2024).

4. B. Giussani, G. Gorla, J. Riu, Analytical Chemistry Strategies in the Use of Miniaturised NIR Instruments: An Overview. Critical Reviews in Analytical Chemistry 54, 11-43 (2024).

5. A. Zeb et al., Towards sweetness classification of orange cultivars using short-wave NIR spectroscopy. Scientific Reports 13, 325 (2023).

6. Y. Yu, M. Yao, Is this pear sweeter than this apple? A universal SSC model for fruits with similar physicochemical properties. Biosystems Engineering 226, 116-131 (2023).

7. M. Wohlers, A. McGlone, E. Frank, G. Holmes, Augmenting NIR Spectra in deep regression to improve calibration. Chemometrics and Intelligent Laboratory Systems 240, 104924 (2023).

8. C. B. S. Tong, M. Gullickson, M. Rogers, E. Burkness, W. D. Hutchison, Detection of Spotted-winged Drosophila (Diptera: Drosophilidae) Infestations in Blueberry Fruits1. Journal of Entomological Science 58, 370-374 (2023).

9. V. S. Titeli, M. Michailidis, G. Tanou, A. Molassiotis, Physiological and Metabolic Traits Linked to Kiwifruit Quality. Horticulturae 9, 915 (2023).

10. A. Sharma et al., Chemometrics driven portable Vis-SWNIR spectrophotometer for non-destructive quality evaluation of raw tomatoes. Chemometrics and Intelligent Laboratory Systems 242, 105001 (2023).

11. A. Praiphui, K. V. Lopin, F. Kielar, Construction and evaluation of a low cost NIR-spectrometer for the determination of mango quality parameters. Journal of Food Measurement and Characterization 17, 4125-4139 (2023).

12. A. Praiphui, F. Kielar, Comparing the performance of miniaturized near-infrared spectrometers in the evaluation of mango quality. Journal of Food Measurement and Characterization 17, 5886-5902 (2023).

13. C. Lu, H. Xu, B. Lannard, X. Yang, Seasonal Changes in Amylose and Starch Compositions in ‘Ambrosia’ Apples Associated with Rootstocks and Orchard Climatic Conditions. Agronomy 13, 2923 (2023).

14. J. E. Larson, P. Perkins-Veazie, T. M. Kon, Apple Fruitlet Abscission Prediction. II. Characteristics of Fruitlets Predicted to Persist or Abscise by Reflectance Spectroscopy Models. HortScience 58, 1095-1103 (2023).

15. J. E. Larson, T. M. Kon, Apple Fruitlet Abscission Prediction. I. Development and Evaluation of Reflectance Spectroscopy Models. HortScience 58, 1085-1092 (2023).

16. L. Duckena et al., Non-Destructive Quality Evaluation of 80 Tomato Varieties Using Vis-NIR Spectroscopy. Foods 12, 1990 (2023).

17. B. M. Anthony, D. G. Sterle, I. S. Minas, Robust non-destructive individual cultivar models allow for accurate peach fruit quality and maturity assessment following customization in phenotypically similar cultivars. Postharvest Biology and Technology 195, 112148 (2023).


產(chǎn)地:美國Felix



收 藏
上一篇:已經(jīng)沒有了
德安县| 万荣县| 邢台县| 南和县| 故城县| 北海市| 福贡县| 闽侯县| 三台县| 宜君县| 喀什市| 中宁县| 小金县| 渝北区| 邹平县| 济宁市| 防城港市| 弥渡县| 长兴县| 开化县| 子长县| 垣曲县| 临湘市| 云南省| 金寨县| 松阳县| 太原市| 舟曲县| 茌平县| 重庆市| 陇西县| 宿州市| 闵行区| 元朗区| 庄河市| 高平市| 都昌县| 襄城县| 连云港市| 龙川县| 囊谦县|